Philosophie Lexikon der Argumente

Screenshot Tabelle Begriffe

 
Entscheidbarkeit: eine Fragestellung, z.B. ob eine Eigenschaft auf einen Gegenstand zutrifft oder nicht, ist entscheidbar, wenn innerhalb endlicher Zeit ein Ergebnis erreicht werden kann. Dafür wird ein Algorithmus als Entscheidungsverfahren zugrunde gelegt. Siehe auch Halteproblem, Algorithmus, Verfahren, Entscheidungsverfahren, Entscheidungstheorie.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Zusammenfassung Metadaten

 
Bücher bei Amazon
II 343
Entscheidbarkeit/Endlichkeit/Mathematik/Field: der Operator F ("nur endlich viele") macht unentscheidbare Sätze in einem endlichen Bereich entscheidbar - ohne bestimmte Endlichkeit haben wir keinen bestimmten Begriff mehr von Bsp Satz einer gegebenen Sprache, Bsp Theorem eines gegebenen Systems, Bsp Formel einer gegebenen Sprache, Bsp Widerspruchsfreiheit (WSF) eines Systems - weil seit Frege alle Beweise formalisierbar sein müssen.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980

Send Link
> Gegenargumente gegen Field

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 19.10.2017