Philosophie Lexikon der Argumente

Suche  
 
Mengen: Zusammenfassung von Gegenständen in Bezug auf eine Eigenschaft. In der Mengenlehre werden Bedingungen für die Bildung von Mengen aufgestellt. Im Allgemeinen werden Mengen von Zahlen betrachtet. Alltägliche Gegenstände als Elemente von Mengen sind Sonderfälle und werden Urelemente genannt. Mengen sind im Gegensatz zu z.B. Folgen nicht geordnet, d.h. es ist keine Reihenfolge für die Betrachtung der Elemente festgelegt. Siehe auch Elementrelation, Teilmengen, Mengenlehre, Axiome.
 
Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
I 157f
Operator/Mengen/Field: Mengen können aus dem Operator "genau dieselben Dinge, die __ sind, sind __" plus Prädikat-Funktor "{x I...}-œ gewonnen werden -

Fie I
H. Field
Realism, Mathematics and Modality Oxford New York 1989

Fie II
H. Field
Truth and the Absence of Fact Oxford New York 2001

Fie III
H. Field
Science without numbers Princeton New Jersey 1980

> Gegenargumente gegen Field
> Gegenargumente zu Mengen



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 25.05.2017