Philosophie Lexikon der Argumente

Home Screenshot Tabelle Begriffe

 
Mengenlehre: Das System von Regeln und Axiomen, das die Bildung von Mengen regelt. Die Elemente sind hier ausschließlich Zahlen. Mengen enthalten Einzelgegenstände, also Zahlen als Elemente. Des Weiteren enthalten Mengen Teilmengen, also wiederum Mengen von Elementen. Die Menge aller Teilmengen einer Menge heißt ihre Potenzmenge. Jede Menge enthält die leere Menge als Teilmenge, jedoch nicht als Element. Die Größe von Mengen wird als Mächtigkeit bezeichnet. Mengen, die dieselben Elemente enthalten, sind identisch. Siehe auch Komprehension, Komprehensionsaxiom, Auswahlaxiom, Unendlichkeitsaxiom, Paarmengenaxiom, Extensionalitätsprinzip.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Zusammenfassung Metadaten

W.V.O. Quine über Mengenlehre – Lexikon der Argumente

IX 24
Mengenlehre/Quine: wenn man sie außerhalb der reinen Mathematik anwenden will, sollte man alle möglichen Dinge als Elemente zulassen.
IX 237ff
Mengenlehre/Quine: einziges primitives nicht logisches Zeichen: "ε" (Epsilon, Elementbeziehung).
- - -
II 115
Hintergrund zu den Überlegungen zur Mengenlehre hier:
Umfangsgleich: Bsp wenn es zwei Wahrheitsprädikate gibt: "Wahr1" und "Wahr2" die beide dem Paradigma gerecht werden, dann sie diese beiden Prädikate umfangsgleich.
Tarski hat aber auch gezeigt, daß selbst ein Wahrheitsprädikat kann dem Paradigma nicht ganz gerecht werden, ohne Widersprüchlichkeit zu riskieren. Dennoch lässt sich ein Prädikat konstruieren, das einer beliebigen vorherbestimmten Sprache entspricht und dem Paradigma gerecht wird, sofern diese Sprache in ihrem Vokabular festgelegt und in ihrer logischen Struktur formal ist und vorausgesetzt, dass bestimmte Merkmale der Mengenlehre berücksichtigt sind, die außerhalb der vorherbestimmten Sprache liegen.
II 115/116
Das führt zur Forderung nach der Offenheit der Mengenlehre. Zu jeder konsistenten Mengenlehre gibt es eine mächtigere andere. (Auch Gödel).
Das Wahrheitsproblem hat sich als Schlüssel zur Relativität der Mengenlehren herausgestellt.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.
Der Hinweis [Autor1]Vs[Autor2] bzw. [Autor]Vs[Begriff] ist eine Hinzufügung des Lexikons der Argumente.

Quine I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Quine II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Quine III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Quine V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Quine VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Quine VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Quine VII (a)
W. V. A. Quine
On what there is
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (b)
W. V. A. Quine
Two dogmas of empiricism
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (c)
W. V. A. Quine
The problem of meaning in linguistics
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (d)
W. V. A. Quine
Identity, ostension and hypostasis
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (e)
W. V. A. Quine
New foundations for mathematical logic
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (f)
W. V. A. Quine
Logic and the reification of universals
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (g)
W. V. A. Quine
Notes on the theory of reference
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (h)
W. V. A. Quine
Reference and modality
In
From a Logical Point of View, Cambridge, MA 1953

Quine VII (i)
W. V. A. Quine
Meaning and existential inference
In
From a Logical Point of View, Cambridge, MA 1953

Quine VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg) München 1982

Quine IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Quine X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Quine XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003

Quine XIII
Willard Van Orman Quine
Quiddities Cambridge/London 1987

Send Link
> Gegenargumente gegen Quine
> Gegenargumente zu Mengenlehre

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z