Philosophie Lexikon der ArgumenteHome | |||
| |||
Mengenlehre: Das System von Regeln und Axiomen, das die Bildung von Mengen regelt. Die Elemente sind hier ausschließlich Zahlen. Mengen enthalten Einzelgegenstände, also Zahlen als Elemente. Des Weiteren enthalten Mengen Teilmengen, also wiederum Mengen von Elementen. Die Menge aller Teilmengen einer Menge heißt ihre Potenzmenge. Jede Menge enthält die leere Menge als Teilmenge, jedoch nicht als Element. Die Größe von Mengen wird als Mächtigkeit bezeichnet. Mengen, die dieselben Elemente enthalten, sind identisch. Siehe auch Komprehension, Komprehensionsaxiom, Auswahlaxiom, Unendlichkeitsaxiom, Paarmengenaxiom, Extensionalitätsprinzip. _____________Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente. | |||
Autor | Begriff | Zusammenfassung/Zitate | Quellen |
---|---|---|---|
W.V.O. Quine über Mengenlehre – Lexikon der Argumente
IX 24 Mengenlehre/Quine: wenn man sie außerhalb der reinen Mathematik anwenden will, sollte man alle möglichen Dinge als Elemente zulassen. IX 237ff Mengenlehre/Quine: einziges primitives nicht logisches Zeichen: "ε" (Epsilon, Elementbeziehung). - - - II 115 Hintergrund zu den Überlegungen zur Mengenlehre hier: Umfangsgleich: Bsp wenn es zwei Wahrheitsprädikate gibt: "Wahr1" und "Wahr2" die beide dem Paradigma gerecht werden, dann sie diese beiden Prädikate umfangsgleich. Tarski hat aber auch gezeigt, daß selbst ein Wahrheitsprädikat kann dem Paradigma nicht ganz gerecht werden, ohne Widersprüchlichkeit zu riskieren. Dennoch lässt sich ein Prädikat konstruieren, das einer beliebigen vorherbestimmten Sprache entspricht und dem Paradigma gerecht wird, sofern diese Sprache in ihrem Vokabular festgelegt und in ihrer logischen Struktur formal ist und vorausgesetzt, dass bestimmte Merkmale der Mengenlehre berücksichtigt sind, die außerhalb der vorherbestimmten Sprache liegen. >Wahrheitsprädikat. II 115/116 Das führt zur Forderung nach der Offenheit der Mengenlehre. Zu jeder konsistenten Mengenlehre gibt es eine mächtigere andere. (Auch Gödel). Das Wahrheitsproblem hat sich als Schlüssel zur Relativität der Mengenlehren herausgestellt. _____________ Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders. Übersetzungen: Lexikon der ArgumenteDer Hinweis [Begriff/Autor], [Autor1]Vs[Autor2] bzw. [Autor]Vs[Begriff] bzw. "Problem:"/"Lösung", "alt:"/"neu:" und "These:" ist eine Hinzufügung des Lexikons der Argumente. |
Quine I W.V.O. Quine Wort und Gegenstand Stuttgart 1980 Quine II W.V.O. Quine Theorien und Dinge Frankfurt 1985 Quine III W.V.O. Quine Grundzüge der Logik Frankfurt 1978 Quine V W.V.O. Quine Die Wurzeln der Referenz Frankfurt 1989 Quine VI W.V.O. Quine Unterwegs zur Wahrheit Paderborn 1995 Quine VII W.V.O. Quine From a logical point of view Cambridge, Mass. 1953 Quine VII (a) W. V. A. Quine On what there is In From a Logical Point of View, Cambridge, MA 1953 Quine VII (b) W. V. A. Quine Two dogmas of empiricism In From a Logical Point of View, Cambridge, MA 1953 Quine VII (c) W. V. A. Quine The problem of meaning in linguistics In From a Logical Point of View, Cambridge, MA 1953 Quine VII (d) W. V. A. Quine Identity, ostension and hypostasis In From a Logical Point of View, Cambridge, MA 1953 Quine VII (e) W. V. A. Quine New foundations for mathematical logic In From a Logical Point of View, Cambridge, MA 1953 Quine VII (f) W. V. A. Quine Logic and the reification of universals In From a Logical Point of View, Cambridge, MA 1953 Quine VII (g) W. V. A. Quine Notes on the theory of reference In From a Logical Point of View, Cambridge, MA 1953 Quine VII (h) W. V. A. Quine Reference and modality In From a Logical Point of View, Cambridge, MA 1953 Quine VII (i) W. V. A. Quine Meaning and existential inference In From a Logical Point of View, Cambridge, MA 1953 Quine VIII W.V.O. Quine Bezeichnung und Referenz In Zur Philosophie der idealen Sprache, J. Sinnreich (Hg) München 1982 Quine IX W.V.O. Quine Mengenlehre und ihre Logik Wiesbaden 1967 Quine X W.V.O. Quine Philosophie der Logik Bamberg 2005 Quine XII W.V.O. Quine Ontologische Relativität Frankfurt 2003 Quine XIII Willard Van Orman Quine Quiddities Cambridge/London 1987 |