Philosophie Lexikon der Argumente

Screenshot Tabelle Begriffe

 
Paradoxien: Widersprüche innerhalb von formal korrekten Aussagen bzw. Aussagenmengen, die dazu führen, dass eine Existenzannahme, die zunächst plausibel erschien, zurückgezogen werden muss. Paradoxien sind keine Fehler, sondern Herausforderungen, die eventuell zur Neuformulierung der Voraussetzungen und Annahmen oder zur Änderung der Sprache, des Gegenstandsbereichs und des logischen Systems führen. Siehe auch Antinomien, Russellsche Paradoxie, Widersprüche, Reichweite, Konsistenz.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Zusammenfassung Metadaten

 
Bücher bei Amazon
Re III 187f
Paradoxien: Hierarchie (Tarski) -Problem: Kreter weiß nicht, welche Stufe seine eigene Aussage annimmt - sinnvoll nur, wenn Wahrheitszuschreibung über eine niedrigere Stufe erfolgt - setzt Kenntnis voraus! (> Wissen/Verstehen).
Selbstbezüglichkeit: ist gar nicht immer schlecht oder fehlerhaft.
Re III 192f
Curry-Paradox: Wenn A und wenn A. dann B, dann B - Wenn dieser Bedingungssatz wahr ist, dann ist Schnee schwarz - ponendo ponens - Lösung: Kontraktion: zwei Anwendungen durch eine ersetzt - Veränderung der Logik. Bsp
Wenn dieser (Bedingungs-)Satz wahr ist, dann ist Schnee schwarz.
consequentia mirabilis: Wenn A, dann ~A, also ~A - Kontraktion: Wenn A,dann wenn A, dann 0=1; also wenn A, dann 0=1.
Kontraktion führt zur Trivialität: macht jede Aussage aus Curry-Paradox wahr.
Re III 196
Semantisch abgeschlossen: Sprache enthält eigene Wahrheitsprädikate - Vermeidung von Paradox: Trennung der Wahrheitsbedingungen von Falschheitsbedingungen.
Sai V 17
Zenon/Sainsbury: Zenon These: kein Bereich des Raums ist unendlich teilbar, sodass er eine unendliche Anzahl von Teilen hat, wenn jeder Teil eine gewissen Ausdehnung hat: denn dann ist die Summe unendlich groß - Zenon versuchte damit zu zeigen, dass es nicht wirklich viele Dinge gibt - überhaupt könne kein Gegenstand Teile haben, denn dann müsse er unendlich groß sein. - V 19 Sainsbury: unendliche Teilung geht nur geistig. - Problem: dann keine Zusammensetzung zum Raum - bei der Zusammensetzung muss der Raum aber nicht unendlich wachsen. - Bsp Folgen mit Grenzwert
Sai V 38f
Pfeil/Paradoxie/Zenon: zu jedem Zeitpunkt nimmt der fliegende Pfeil einen mit ihm identischen Raum ein. Der Pfeil kann sich also in einem Moment nicht bewegen, da Bewegung eine Zeitspanne erfordert, und eine Moment als Punkt gesehen wird - das gilt auch für alles andere: nichts bewegt sich.
Zeit/AristotelesVsZenon: Zeit besteht nicht aus Punkten.
SainsburyVsAristoteles: heute: wir versuchen ständig, Zeitpunkte zuzulassen: Bsp Beschleunigung an einem Punkt usw.
V 39
Die Frage, ob sich der Pfeil in einem Moment bewegt oder ruht, bezieht auch andere Momente mit ein - Def Ruhe/Sainsbury: ein Gegenstand ruht unter der Bedingung, daß er sich auch in allen naheliegenden Momenten am selben Punkt befindet - keine Information über den einzelnen Moment kann feststellen, ob sich der Pfeil bewegt - die Prämisse ist annehmbar: keine Bewegung im Moment - aber die Folgerung ist unannehmbar.
Sai V 184
Satz/Aussage: nur bestimmter Gelegenheit zirkulär - Paradoxie daher nicht in der Bedeutung, sondern in der Gelegenheit - ((s) > Gebrauchstheorie).


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.
Texte zur Logik
Me I Albert Menne Folgerichtig Denken Darmstadt 1988
HH II Hoyningen-Huene Formale Logik, Stuttgart 1998
Re III Stephen Read Philosophie der Logik Hamburg 1997
Sal IV Wesley C. Salmon Logik Stuttgart 1983
Sai V R.M.Sainsbury Paradoxien Stuttgart 2001

Send Link
> Gegenargumente zu Paradoxien ...

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 16.12.2017