Philosophie Lexikon der Argumente

Suche  
 
Vollständigkeit, Philosophie: A. Systeme sind vollständig, wenn alle in ihnen gültigen Aussagen beweisbar sind.
B. Bei der Frage der Vollständigkeit einer Beschreibung geht es immer um bestimmte Zwecke dieser Beschreibung im Rahmen einer Theorie, die auf die beschriebenen Gegenstände zutrifft. Eine Besonderheit im Falle von Elementarteilchen ist, dass ihre vollständige Beschreibung nicht die Unterscheidung von anderen Teilchen derselben Sorte ermöglicht. Siehe auch Unvollständigkeit, Bestimmtheit, Bestimmung, Unterscheidung, Ununterscheidbarkeit.
 
Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
I 182
Def Vollständigkeit/Regelsystem/Mates: ein Regelsystem ist vollständig, wenn man mit seiner Hilfe jede Folgerung aus einer gegebenen Aussagenmenge ableiten kann.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
0226509869 1981

> Gegenargumente gegen Mates



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 28.05.2017