Philosophie Lexikon der Argumente

Screenshot Tabelle Begriffe

 
Widerspruchsfreiheit, Logik, Mathematik, Philosophie: Der Ausdruck der Widerspruchsfreiheit wird auf Systeme bzw. Mengen von Aussagen angewendet. Aus einem widersprüchlichen System kann jede beliebige Aussage abgeleitet werden (siehe ex falso quodlibet). Daher sind widersprüchliche Systeme grundsätzlich unbrauchbar. Siehe auch Systeme, Beweisbarkeit, Beweise, Kalkül, Konsistenz, Theorien, Vollständigkeit, Gültigkeit, Ausdrucksstärke.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Zusammenfassung Metadaten
I 234
Widerspruchsfreiheit/WSF/Mates: kann zweifach verifiziert werden:
a) semantisch: indem man eine Interpretation angibt, bei der alle Axiome wahr sind
b) syntaktisch: indem man, ohne sich auf eine Interpretation zu beziehen, zeigt, dass es keine Aussage φ gibt, derart, dass sowohl φ als auch ~φ aus den Axiomen ableitbar ist.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.
Der Hinweis [Autor1]Vs[Autor2] bzw. [Autor]Vs[Begriff] ist eine Hinzufügung des Lexikons der Argumente.

Mate I
B. Mates
Elementare Logik Göttingen 1969

Mate II
B. Mates
Skeptical Essays Chicago 1981

Send Link
> Gegenargumente gegen Mates

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z