Philosophie Lexikon der Argumente

Screenshot Tabelle Begriffe

 
Zahlen: Ob Zahlen Gegenstände oder Begriffe sind, ist in der philosophischen Diskussion über Jahrtausende umstritten gewesen. Die heute am weitesten akzeptierte Definition stammt von G. Frege (G. Frege, Grundlagen der Arithmetik 1987, S. 79ff). Von Frege inspirierte Redeweisen stellen Zahlen als Klassen von Klassen dar oder als Begriffe zweiter Stufe bzw. als das, womit man die Mächtigkeit von Mengen misst. Bis heute ist in der Diskussion von Zahlen eine Zweideutigkeit zwischen Begriff und Gegenstand auffindbar. Siehe auch Zählen, Mengen, Messen, Mathematik, Abstrakte Gegenstände, Mathematische Entitäten, Theoretische Entitäten, Anzahl, Platonismus.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Zusammenfassung Metadaten

 
Bücher bei Amazon
I 219
Nicht alle abstrakten Gegenstände sind Eigenschaften: Zahlen, Klassen, Funktionen, geometrische Figuren, Ideen, Möglichkeiten. - Wir müssen abstrakte Gegenstände aufgeben oder zurückführen - getreulich durch Gebrauch von "-heit" von konkreten unterscheiden!
II 26
Zahlen: Quantifikation ist Vergegenständlichung, Ziffern Namen - Diagonalen: irrational, Umfang: transzendent
Messen: Meßskale: mehrstelliger allg Term, setzt physikalische Gegenstände in Beziehung zu reinen Zahlen. - Zählen: Messen einer Klasse
II 28
Zahlen/Ontologie: Zahlen bloß "facon de parler" - höhere Klassen nötig, um Zahlen zu ersetzen - sonst nur physikalische Gegenstände.
IX 54
Zahlen/Frege/Quine: wie Vorgänger (Ahne): Def Vorgänger/Frege: die gemeinsamen Elemente aller Klassen z, die die Anfangsbedingung: "y ε z" und eine Abgeschlossenheitsbedingung: die auf "a " "z < z" hinauslief, erfüllten - wobei a die Elternrelation ist. - Quine: bis jetzt sagen wir noch nicht, dass Zahlen Klassen sind - unendliche Klassen vermeiden wir, wenn wir statt der Nachfolger- die Vorgängerrelation nehmen: {x: ∀z[(x ε z u ^S " "z < z) > 0 ε z]}. - Problem. die Nachfolgerrelation könnte auch zu Dingen führen, die keine >Zahlen sind - Zahlen/Quine: werden wir vor allem als Maß für Vielfachheiten benutzen (so hatte Frege sie definiert) - a hat x Elemente" - das Schema geht auf Frege zurück: a hat 0 Elemente <> a = Λ. - a hat S°x Elemente ↔ Ey(y ε a ∩ _{y} hat x Elemente.
IX 59
Zahlen/Zermelo: (1908) nimmt Λ als 0 und dann {x} als S°x für jedes x. (d.h. "{x}" immer eins mehr als x! - {x} Nachfolger von x! - Als Zahlen erhalten wir dann Λ, {Λ},{{Λ}}..usw.
IX 59f
Zahlen/von Neumann: (1923) fasst jede natürliche Zahl als die Klasse der früheren Zahlen auf: 0 wird wieder Λ, - aber Nachfolger: S°x wird nicht {x}, sondern x U {x}. (vereinigt mit) - 1: wie bei Zermelo: gleich {Λ}, - aber 2: {0,1} oder {Λ,{Λ}}. - 3: {0,1,2} oder {Λ,{Λ},{Λ,{Λ,{Λ}}}, - für von Neumann besagt, dass a x Elemente hat, dass a ~ x. (Anzahl, gleichmächtig) - das ist gerade das "a ~ {y: y < x}" von Kap 11. denn für von Neumann ist x = {y: y < x}.
IX 60
Zahlen/Frege: ausschließlich Zahlen als Maßzahlen von Vielfachheiten. - Jede Zahl ist die Klasse aller Klassen, die diese Zahl von Elementen haben - Null/Frege: ist für ihn daher lieber {Λ} als Λ - Nachfolger: {z: Ey(y ε z ∧ z D _{y} ε x )}. (_{y} Komplement) - gleichmächtig: wie bei den anderen: "a hat x Elemente" wird durch
"a ~ {y : y IX 60f
Zahlen/Quine: ich verwende Zermelos Version für 0 und S. nämlich Λ und i. - Schreibweise: "i" jetzt statt "S" für Nachfolger - "b <= a" oder "a >= b" steht für "z[(a e z u ^i " "z < z) > b ε z]" - "b <=a" oder "a > b" steht für "{b} <= a" - "N" steht für "{x: Λ <= x}" - "<=" : diese Relation ist reflexiv und transitiv! - x <= x. ("kann nicht größer sein") - x <= {x}. - x < {x}.
IX 203
Natürliche Zahlen/kumulative Typen/Quine: die Zermeloschen und von Neumannschen Zahlen fahren hier ein wenig besser als in Russells Typentheorie. Neumann: bei ihm war x U {x} Nachfolger von x und damit kommt er offenbar mit der Typentheorie in Konflikt - Zermelo: dito, wenn man zwei Zahlen, z.B. x und seinen Nachfolger, in eine Klasse stecken möchte - neu: mit der Tolerierung der endlichen Heterogenität in Klassen wird der Konflikt vermieden.
XII 61
Zahlen/Russell: man braucht nicht zu entscheiden, was sie über die Arithmetik hinaus sind. - QuineVsRussell: jede Progression ist ein Modell der natürlichen Zahlen. - Aber sie sind nicht alle verträglich -" Bsp die Progression der geraden und der ungeraden Z. können nicht gleichgesetzt werden. - Daher sind nicht alle Dinge, die die Arithmetik erfüllen, Zahlen. - Man kann nicht absolut sagen, was Zahlen sind - nur relativ zu einer Rahmentheorie.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003

Send Link
> Gegenargumente gegen Quine
> Gegenargumente zu Zahlen ...

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 21.11.2017