Philosophie Lexikon der Argumente

 
Zahlen: Ob Zahlen Gegenstände oder Begriffe sind, ist in der philosophischen Diskussion über Jahrtausende umstritten gewesen. Die heute am weitesten akzeptierte Definition stammt von G. Frege (G. Frege, Grundlagen der Arithmetik 1987, S. 79ff). Von Frege inspirierte Redeweisen stellen Zahlen als Klassen von Klassen dar oder als Begriffe zweiter Stufe bzw. als das, womit man die Mächtigkeit von Mengen misst. Bis heute ist in der Diskussion von Zahlen eine Zweideutigkeit zwischen Begriff und Gegenstand auffindbar. Siehe auch Zählen, Mengen, Messen, Mathematik, Abstrakte Gegenstände, Mathematische Entitäten, Theoretische Entitäten, Anzahl, Platonismus.

_____________
Anmerkung: Die obigen Begriffscharakterisierungen verstehen sich weder als Definitionen noch als erschöpfende Problemdarstellungen. Sie sollen lediglich den Zugang zu den unten angefügten Quellen erleichtern. - Lexikon der Argumente.

 
Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
II 32
Zahl/Wittgenstein: kein Begriff, sondern eine logische Form.
II 283
Zahlen/KZ/Wittgenstein: daß es unendlich viele Kardinalzahlen gibt, ist eine Regel, die man aufstellt.
II 343
Zahl/Frege/WittgensteinVsFrege: eine Zahl sei eine Eigenschaft einer Eigenschaft. - Problem: Bsp für blauäugige Männer im Zimmer. - Dann wäre die Fünf eine Eigenschaft der Eigenschaft, ein blauäugiger Mann im Zimmer zu sein - Bsp um auszudrücken, daß Hans und Paul zwei sind, müßte ihnen dann eine Eigenschaft gemeinsam sein, die dem anderen gerade nicht zukommt. - ((s) jeder müßte die Eigenschaft haben, vom anderen verschieden zu sein.) - Lösung/Frege: die Eigenschaft, Hans oder Paul zu sein.
II 344
Zahl/Wittgenstein: nicht bloß Zeichen. - Man kann zwei Gegenstände der Form "Drei" haben, aber nur eine Zahl. - ((s) WittgensteinVsFormalismus.)
II 360
Zahl/Definition/WittgensteinVsRussell: Gleichzahligkeit ist die Voraussetzung für eineindeutige Zuordnung. - Daher ist Russells Definition der Zahl zwecklos. - ((s) weil zirkulär, wenn man Zahl über Abbildung definieren will).
II 361
Definition/Wittgenstein: statt einer Definition von "Zahl" müssen wir uns über die Gebrauchsregeln klar werden.
II 415
Zahl/Russell/Wittgenstein: hat behauptet, 3 sei die Eigenschaft, die allen Triaden gemeinsam ist.
II 416
Def Zahl/WittgensteinVsRussell: die Zahl ist ein Attribut einer Funktion, die eine Klasse definiert, nicht eine Eigenschaft der Extension. - Bsp Extension: es wäre eine Tautologie zu sagen, ABC sei drei. - Dagegen sinnvoll: zu sagen, in diesem Zimmer sind drei Personen.
IV 93
Def Zahl/Zahlen//Wittgenstein/Tractatus: 6.021 - die Zahl ist der Exponent einer Operation.
- - -
Waismann I 66
Def natürlichen Zahlen/Wittgenstein: diejenigen, auf die man die Induktion bei Beweisen anwenden kann.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.

W II
L. Wittgenstein
Vorlesungen 1930-35 Frankfurt 1989

W III
L. Wittgenstein
Das Blaue Buch - Eine Philosophische Betrachtung Frankfurt 1984

W IV
L. Wittgenstein
Tractatus Logico Philosophicus Frankfurt/M 1960

Wa I
F. Waismann
Einführung in das mathematische Denken Darmstadt 1996

Wa II
F. Waismann
Logik, Sprache, Philosophie Stuttgart 1976

> Gegenargumente gegen Wittgenstein
> Gegenargumente zu Zahlen ...

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 22.09.2017