Philosophie Lexikon der Argumente

Suche  
 
Leibniz-Prinzip: Das Leibniz‘sche Gesetz oder auch Identitätsprinzip besagt, dass wenn in den vollständigen Beschreibungen von Gegenständen exakt die gleichen Eigenschaften zugeschrieben werden, es sich um denselben Gegenstand handelt. Bei Identität handelt es sich niemals um zwei oder mehr Gegenstände sondern um einen, für den es jedoch häufig verschiedene Beschreibungen mit verschiedener Wortwahl gibt. Nicht jede Beschreibung ist vollständig, daher folgt nicht aus jeder Ununterscheidbarkeit Identität. Siehe auch Identität, Intensionen, Extensionen, Unterscheidbarkeit, Ununterscheidbarkeit.
 
Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
Millikan I 261
VsLeibniz’ Prinzip/Gesetz/R. M. Adams/Millikan: These: das Prinzip, das gebraucht wird, wenn man solche symmetrischen Welten konstruiert ist, das Prinzip, dass ein Individuum nicht von sich selbst unterschieden (getrennt) werden kann, daher können die zwei Welthälften nicht ein und dieselbe Hälfte sein.
Leibniz’ Gesetz/VsVs/Hacking/Millikan: (jüngste Verteidigung von Hacking): die Einwände gehen nicht darauf ein, dass es sich um gekrümmten Raum statt um eine Verdoppelung handeln könnte.
Gekrümmter Raum/Hacking/Millikan: hier taucht ein und dasselbe Ding nochmals auf, es ist keine Verdoppelung wie in der Euklidischen Geometrie.
MillikanVsHacking: aber das würde eben die Frage nicht beantworten.
I 262
Es gibt aber immer noch zwei interessante Möglichkeiten: > Ununterscheidbarkeit.
Leibniz’ Gesetz/Prinzip/Identität/Ununterscheidbarkeit/Millikan:
1. symmetrische Welt: man könnte behaupten, dass hier einfach keine Tatsache gibt, die darüber entscheidet, ob der Raum gekrümmt ist oder verdoppelt. ((s) >Nonfaktualismus).
Pointe: das würde beinhalten, dass Leibniz Prinzip weder metaphysisch noch logisch notwendig ist, und dass seine Gültigkeit nur eine Frage der Konvention ist.
2. symmetrische Welt: man könnte sagen, dass das Beispiel keine allgemeine Lösung anbietet, wohl aber die Annahme einer bestimmten gegebenen symmetrischen Welt: hier gäbe es dann sehr wohl einen Tatsache, ob der Raum gekrümmt ist oder nicht. Ein bestimmter gegebener Raum kann nämlich nicht beides sein!
Pointe: dann ist Leibniz Prinzip weder metaphysisch noch logisch notwendig.
Pointe: aber in diesem Fall ist das dann keine Frage der Konvention, sondern eine wirkliche Tatsache!
MillikanVsAdams/MillikanVsArmstrong/Millikan: weder Adams noch Armstrong berücksichtigen das.
Gekrümmter Raum/Millikan: hier ist das, was identisch ist, notwendig identisch ((s) weil es nur gespiegelt ist). Hier gälte das Kontrafaktische Konditional: wenn die eine Hälfte anders gewesen wäre, dann auch die andere. Hier scheint der Raum überhaupt nur doppelt zu sein.
Verdoppelung/Millikan: wenn der Raum (in Euklidischer Geometrie) gespiegelt ist, ist die Identität eine zufällig, nicht notwendige. Hier könnte die eine Hälfte sich ändern, ohne dass die andere Hälfte sich ändert. ((s) Kein Kontrafaktisches Konditional).
Identität: ist dann gegeben, wenn die Gegenstände nicht deswegen ununterscheidbar sind, weil ein Gesetz in situ gilt, sondern ein Naturgesetz, eine naturnotwendige Übereinstimmung.
I 263
Dann gilt in der zweiten Option Identität aus Kausalität.
(x)(y){[NN(F)Fx äqui Fy] äqui x = y}
NN/Schreibweise: naturnotwendig unter natürlich möglichen Umständen.

> Gegenargumente gegen Adams



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 27.05.2017