Philosophie Lexikon der Argumente

Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
I 360
Goldener Schnitt/Bigelow/Pargetter: diese Relation ist nur allzu real. Dennoch ist sie kein Verhältnis in unserem Sinn.
Bsp wenn wir Strecken erzeugen, indem wir DF aneinanderreihen werden wie niemals einen Übereinstimmungspunkt erhalten mit Vielfachen von DC.
Logische Form/allgemein/Inkommensurabilität/Bigelow/Pargetter: n mal DF wird niemals = m mal DC sein.
Das gilt auch für die Lösung von Wiener (s.o.).
Proportion: ist hier 2 : (1 + 5), daher kann sie nicht als Verhältnis a : b für ganze Zahlen a und b dargestellt werden.
Inkommensurabilität/Beweis: kann durch raa bewiesen werden: Angenommen, DF und DC wäre kommensurabel, d.h. es gibt einen Abstand d, der sowohl DF als auch DC teilt. Betrachten wir das Rechteck (in obiger Graphik) FDC, d teilt DF auf und DF entsprich EC. Diese teilt sowohl DC als auch EC. Daher muss sie auch DE aufteilen. Dann muss dieselbe Größe sowohl das größere als auch das kleinere Rechteck teilen, was nicht geht. d müsste dann auch die Seiten des dritten Rechtecks in der Zeichnung teilen usw. ad infinitum.
Daher kann keine endliche Länge beide Seiten eines goldenen Rechtecks teilen.
I 360
VsBigelow: die Inkommensurabilität scheint gegen unsere Theorie zu sprechen.
BigelowVsVs: Lösung: wir definieren „Verhältnis“ etwas neu: wir brauchen eine dritte Relation:
Def Inkommensurabilität/logische Form//Bigelow/Pargetter: wenn zwei Relationen R und S inkommensurabel sind, dann, wann immer
x Rn y,
folgt, dass
nicht : x Sm y,
für welche Werte von n und m auch immer. Wiederholung von n Anwendungen von R wird niemals mit m Anwendungen von S zu einer Übereinstimmung führen.
Pointe: dennoch können wir feststellen, dass die Resultaten der wiederholten Anwendungen von R und S in einer bestimmten Relation zueinander stehen. Sie stehen in einer Reihenfolge unter der linearen Ordnung „<“ („kleiner“). D.h. es kann sein, für ein n und ein m
Wenn x Rn y und x Sm z, dann y < z.
Goldener Schnitt/Bigelow/Pargetter: ist eindeutig definiert durch die Liste der Zahlen n und m für die das obige Schema gilt.
I 362
allgemein: jede Proportion zwischen zwei Relationen R und S kann eindeutig charakterisiert werden durch eine Liste natürlicher Zahlen n und m, für die das Schema gilt.
Proportion/Bigelow/Pargetter: diese Theorie der Proportionen geht auf Eudoxos Beitrag zu Euklids Elementen (Buch 5 Def 5) zurück.
Reelle Zahlen/Bigelow/Pargetter: diese Theorie der Proportionen als Theorie der reellen Zahlen wurde ende des 19. Jahrhundert von Dedekind und anderen entwickelt.
I 364
Geometrie/Bigelow/Pargetter: hat mit räumlich instanziierten Universalien zu tun. Daher ist sie verwundbar durch empirische Entdeckungen über den Raum. Es könnte sein, dass wir entdecken, dass der Raum die geometrischen Formen gar nicht instanziiert, von denen wir bisher angenommen hatten, dass sie es würden.
Aristoteles/Bigelow/Pargetter. nach ihm würden die Formen dann verworfen.
Platon/Bigelow/Pargetter: dieser erlaubt erst die Annahme eines Nicht-Euklidischen Raums. ((s) Aber wenn er bloß für uns nicht direkt wahrnehmbar ist und z.B. im Universum instanziiert ist, ist es für Aristoteles auch kein Problem).
I 365
Universalien/Platonismus/Bigelow/Pargetter: eigentlich glaubt auch er nicht an uninstanziierte Universalien, sondern er wird welche finden 8oder erfinden). Vor allem wird er sagen, dass reine Mathematik autonom ist.


_____________
Zeichenerklärung: Römische Ziffern geben die Quelle an, arabische Ziffern die Seitenzahl. Die entsprechenden Titel sind rechts unter Metadaten angegeben. ((s)…): Kommentar des Einsenders.

Big I
J. Bigelow, R. Pargetter
Science and Necessity Cambridge 1990

> Gegenargumente gegen Bigelow

Autoren A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  


Begriffe A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Z  



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 25.09.2017