Begriff/ Autor/Ismus |
Autor![]() |
Eintrag![]() |
Literatur![]() |
---|---|---|---|
Mengenlehre | Lorenzen | Berka I 269 Induktive Definition/Mengenlehre//LorenzenVsMengenlehre: Bsp Eine induktive Definition einer Menge M durch a(y) > y ε M, x ε M u b(x,y) > y ε M worin a(x) und b(x,y) schon definierte Formeln seien, in denen M nicht vorkommt, wird mengentheoretisch dadurch "erklärt", dass M der Durchschnitt aller der Mengen N sein solle, die diese Implikationen mit N statt M erfüllen. Dialogische Logik/Lorenzen: Wer aber eine Behauptung n ε M (sic) verteidigen will, wird schwerlich alle diese Mengen N bemühen. Als Proponent P wird er vielmehr dem Opponenten O gegenüber entweder direkt a(n) verteidigen oder zunächst ein m angeben, das er b(m,n) und m ε M verteidigen will. https://www.philosophie-wissenschaft-kontroversen.de/gesamtliste.php?thema=Dialogische%20Logik. Schrittzahl/Lorenzen: Damit wir dieses Vorgehen als den dialogischen Sinn der induktiven Definition von M festsetzen können, muss zusätzlich noch von P verlangt werden, dass er zu jeder Behauptung der Form x ε M die Schrittzahl angibt, die er zum vollständigen Beweis benötigt. Bsp Angenommen, er führt n ε M auf die Behauptung m ε M zurück und hat er für n ε M I 270 die Schrittzahl v angegeben, so muss er für m ε M eine Schrittzahl µ < v angeben. Ohne eine solche Angabe könnte P bei der folgenden induktiven Definition der Ordnung "kleiner" < für die ganzen Zahlen Bsp 0 < y für positive Zahlen y x < y _> x +/ 1 < y +/ 1 z.B. 1 < 0 behaupten, und dafür einen "Beweis" mit Hilfe von 0 < 1, 1 < 2, 2 < 3... beginnen. Natürlich könnte der den Beweis nicht zu Ende führen, aber das könnte O ihm nicht nachweisen. Dialogische Logik/Lorenzen: Es ist in diese Dialogen ja nie gestattet, plötzlich in "freier Rede" auf den Gegner einzureden. Muss P dagegen zusätzlich eine Schrittzahl v angeben, so wird er spätestens nach v Schritten seine Behauptung verloren haben. Schrittzahl: Die Schrittzahlen sind hier selbstverständlich natürliche Zahlen. Will man auch unendlichen induktiven Definitionen, d.h. solchen mit unendlich vielen Prämissen einen dialogischen Sinn geben, so muss man transfinite Ordinalzahlen als Schrittzahl zulassen. Induktive Definition/LorenzenVsHerbrand: Bsp Es sei eine Funktionenfolge f1, f2...schon definiert und es werde das Induktionsschema a(y) > y ε M (x)fx(y) ε M > y ε M angeschrieben. Diese Definition ist keineswegs "imprädikativ". >Imprädikativität. Aber sie ist auch nicht eigentlich konstruktiv. Wir haben hier ja unendlich viele Prämissen f1(y) ε M, f2(y) ε M ... die zum Beweis von y ε M erforderlich sind. Unendlich: Im Dialog kann man nicht jede Prämisse verteidigen, man wird daher O erlauben, eine fm(y) ε M auszuwählen. Diese muss P dann behaupten und verteidigen. Zusätzlich muss P eine im allgemeinen transfinite Ordinalzahl als Schrittzahl angeben. Schrittzahl: Die Schrittzahl einer Prämisse muss dabei stets kleiner als die Schrittzahl der Konklusion angegeben werden. Gewinnstrategie von P: P muss für alle Wahlen des Opponenten die Schrittzahlen liefern. II. Zahlenklasse/Zweite Zahlenklasse/Lorenzen: Mengentheoretisch beweist man leicht die Existenz geeigneter Ordinalzahlen der II. Zahlenklasse. Man kann ja durch transfinite Rekursion definieren: y ε M0 <> a(y) y ε Mλ <> (x)fx(y) ε Ux x < λ Mx. dann ist M = Ul l> µ Ml für ein geeignetes µ und wenn M eine Menge natürlicher Zahlen sein soll, kann µ der II. Zahlenklasse entnommen werden, Konstruktiv: soll die induktive Definition aber konstruktiv sein, so müssen auch die benutzten Ordinalzahlen "konstruktiv" sein. Hier liegt es nahe, sich auf die rekursiven Ordinalzahlen von Church und Kleene zu beschränken.(1) >Konstruktivismus, >Intuitionismus, >Rekursion, >Rekursivität. 1. P. Lorenzen, Ein dialogisches Konstruktivitätskriterium, in: Infinitistic Methods, (1961), 193-200 |
Lorn I P. Lorenzen Constructive Philosophy Cambridge 1987 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
Unendlichkeit | Lorenzen | Berka I 266 Überabzählbar/unendlich/LorenzenVsMengenlehre: Fabelreich des "Überabzählbaren". ((s) nicht konstruierbar) >Konstruktivismus, >Mengenlehre/Lorenzen. Berka I 272 Unendlich/Prämissen/Dialogische Logik/Lorenzen: Man kann zu jeder im Peano-Formalismus ableitbaren Formel eine Schrittzahl l < e0 mit e0 = ω hoch ω hoch ω hoch... angeben. Proponent P kann also aus einer ihm von Opponent O gegebenen Ableitung einer Formel zunächst eine Ordinalzahl l < e0 berechnen, ferner die Regel im Halbformalismus angeben, nach der diese Formel dort im letzten Schritt abzuleiten ist und, wenn O jetzt eine der Prämissen wählt, so kann er dafür eine kleinere Ordinalzahl berechnen. >Ableitung, >Ableitbarkeit. Das Berechnungsverfahren ist dabei rekursiv, also sogar im engsten Sinn konstruktiv. >Konstruktivismus, >Rekursion, >Rekursivität, >Berechenbarkeit. Die Aussageformen, die im Widerspruchsfreiheitsbeweis gebraucht werden, sind dagegen im allgemeinen nicht rekursiv.(1) >Widerspruchsfreiheit, >Beweise, >Beweisbarkeitt. 1. P. Lorenzen, Ein dialogisches Konstruktivitätskriterium, in: Infinitistic Methods, (1961), 193-200 |
Lorn I P. Lorenzen Constructive Philosophy Cambridge 1987 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
![]() |