Begriff/ Autor/Ismus |
Autor |
Eintrag |
Literatur |
---|---|---|---|
Formale Sprache | Tarski | Berka I 458 Formale Sprache/Tarski: In einer formalen Sprache ist der Sinn jedes Ausdrucks eindeutig durch seine Gestalt bestimmt. I 459 Variablen: haben keine selbständige Bedeutung. Aussagen bleiben nach Übersetzung in Alltagssprache Aussagen. Variablen/Tarski: repräsentieren bei uns immer Namen von Klassen von Individuen. >Klassenname. Berka I 461 Formale Sprache/Terminologie/Abkürzungen/Schreibweise/Tarski: hier: die untersuchte Sprache (Objektsprache) - Symbole: N, A, I, P: Negation, Alternation, Inklusion, Allzeichen. Metasprache/MS: Symbole ng (Negation), sm (Summe, = Alternation), in (Inklusion). Das ist die Sprache, in der die Untersuchung durchgeführt wird. ng, sm usw. entsprechen den alltagssprachlichen Ausdrücken, ((s) die formalen Symbole N, A usw. nicht!). I 464 Bsp Objektsprache: Bsp Ausdruck: NIxi,xll Metasprache: Übersetzung dieses Ausdrucks: (strukturell-deskriptiver Name, symbolischer Ausdruck): Name: "((ng ^ in) ^v1) ^v2" - aber: s.u. Unterschied Name/Übersetzung.(1) >Strukturell-deskriptiver Name, >Anführungsname, >Metasprache. 1.A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol 1, Lemberg 1935 Horwich I 112 Formale Sprache/Tarski: In einer formalen Sprache sind alle behauptbaren Sätze Theoreme. - Es kann auch Sprachen mit genau spezifizierter Struktur geben, die nicht formalisiert sind. - Dann mag die Behauptbarkeit von außersprachlichen Faktoren abhängen.(2) >Behauptbarkeit. 2. A. Tarski, The semantic Conceptions of Truth, Philosophy and Phenomenological Research 4, pp. 341-75 |
Tarski I A. Tarski Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 Horwich I P. Horwich (Ed.) Theories of Truth Aldershot 1994 |
Konvention W | Tarski | Berka I 476f Def Konvention W/Originalstelle/Tarski: Eine formal korrekte in den Termini der Metasprache formulierte Definition des Symbols "Wr" ("Klasse aller wahren Aussagen") werden wir eine zutreffende Definition der Wahrheit nennen, wenn sie folgende Folgerungen nach sich zieht. I 477 a) alle Sätze, die man aus dem Ausdruck "x ε Wr gdw "p" gewinnt, indem man für das Symbol x einen strukturell-deskriptiven Namen einer beliebigen Aussage der betrachteten Sprache ((s) der Objektsprache) und für das Symbol "p" den Ausdruck, der die Übersetzung dieser Aussage in die Metasprache bildet, einsetzt; b) die Aussage "für ein beliebiges x - wenn x ε Wr, so x ε AS" (oder mit anderen Worten "Wr ⊂ AS"). Neu gegenüber Kapitel 1: Einführung der Metasprache.(1) >Objektsprache, >Metasprache. I 451 Def strukturell-deskriptiver Name/Tarski: (andere Kategorie als die Anführungsnamen): beschreiben, aus welchen Worten der durch den Namen bezeichnete Ausdruck und aus welchen Zeichen jedes einzelne Wort besteht und in welcher Ordnung diese aufeinander folgen - das geht ohne Anführungszeichen. Methode: für alle Buchstaben und anderen Zeichen Einzelnamen (keine Anführungsnamen) einführen. - Bsp für die Buchstaben: "f", "j", "P" usw.die Bezeichnungen: Ef, Jott, Pe, iks (ohne Anführungszeichen) - Bsp dem Anführungsnamen ""Schnee"" (Anführungszeichen doppelt) entspricht der strukturell-deskriptiver Name: "Wort, das aus den sechs aufeinanderfolgenden Buchstaben Es, Ce, Ha, En, E und E besteht" - (Buchstabennamen ohne Anführungszeichen). 1. A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol 1, Lemberg 1935 |
Tarski I A. Tarski Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
Methode | Tarski | Berka I 401 Widerspruchsfreiheit/WSF/Beweis/Widerspruchsfreiheitsbeweis/Gödel: Widerspruchsfreiheitsbeweis lässt sich nicht durchführen, wenn die Metasprache keine Variablen höheren Typs enthält. >Metasprache, >Ausdrucksfähigkeit, >vgl. >Typentheorie. Unentscheidbarkeit: wird beseitigt, wenn man die untersuchte Theorie (Objektsprache) mit Variablen höheren Typs bereichert.(1) >Entscheidbarkeit. 1. A.Tarski, „Grundlegung der wissenschaftlichen Semantik“, in: Actes du Congrès International de Philosophie Scientifique, Paris 1935, Bd. III, ASI 390, Paris 1936, S. 1-8 I 462 Metasprache/Tarski: Die Metasprache ist unser eigentliches Untersuchungsobjekt. - ((s) Wegen der Anwendungsbedingung des Wahrheitsbegriffs.) I 464 Metasprache/Tarski: 2. Kategorie von Ausdrücken: spezifische Termini von strukturell-deskriptivem Charakter. >Strukturell-deskriptiver Name. Namen von konkreten Zeichen und Ausdrücken des Klassenkalküls Namen von Klassen von Folgen solcher Ausdrücke und von zwischen ihnen bestehenden strukturellen Relationen. Jedem Ausdruck der betrachteten Sprache (Objektsprache) kann man - einerseits einen individuellen Namen dieses Ausdrucks, und - andererseits einen Ausdruck, der die Übersetzung dieses Ausdrucks in die Metasprache ist, zuordnen - das ist entscheidend für die Konstruktion der Wahrheitsdefinition. >Wahrheitsdefinition/Tarski. I 464 Name/Übersetzung/Metasprache/Objektsprache/Tarski: Unterschied: Ein Ausdruck der Objektsprache kann in der Metasprache a) einen Namen erhalten, oder b) eine Übersetzung. Berka I 525 Morphologie/Tarski: Unsere Metasprache enthält hier die gesamte Objektsprache - d.h. für uns aber nur logische Ausdrücke der allgemeinen Klassentheorie - d.h. nur strukturell-deskriptive Termini. >Homophonie. Damit haben wir die Morphologie der Sprache, d.h. sogar den Begriff der Folgerung zurückgeführt. I 526 Damit haben wie die Logik dieser untersuchten Wissenschaft als einen Teil der Morphologie begründet.(2) >Beschreibungsebenen, >Semantische Geschlossenheit. 2. A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol 1, Lemberg 1935 |
Tarski I A. Tarski Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
Namen | Tarski | Berka I 451 Def Anführungsname/Tarski: Jeder Name einer Aussage (oder sogar sinnlosen Ausdrucks) der aus Anführungszeichen und dem Ausdruck besteht, und der eben das durch den betrachteten Namen Bezeichnete ist. Bsp der Name ""es schneit"". ((s) Anführungszeichen doppelt). Pointe: Gleichgestaltete Ausdrücke dürfen nicht identifiziert werden! - Daher sind Anführungsnahmen allgemeine, nicht individuelle Namen (Klassen von Zeichenreihen). >Beschreibungsebenen, >Anführungszeichen, vgl. >Namen von Sätzen. I 453 Syntaktisch einfacher Ausdruck - wie z.B. ein Buchstabe - hat dann keine selbständige Bedeutung. ((s) s.u. I 454 Hier sind es zusammengesetzte Ausdrücke, die eine Bedeutung haben.) I 451 Def strukturell-deskriptiver Name/Tarski: (andere Kategorie als die Anführungsnamen): beschreiben, aus welchen Worten der durch den Namen bezeichnete Ausdruck und aus welchen Zeichen jedes einzelne Wort besteht und in welcher Ordnung diese aufeinander folgen - das geht ohne Anführungszeichen. Methode: für alle Buchstaben und anderen Zeichen Einzelnamen (keine Anführungsnamen) einführen. Bsp für die Buchstaben: "f", "j", "P" usw.die Bezeichnungen: Ef, Jott, Pe, iks (ohne Anführungszeichen) - Bsp dem Anführungsnamen ""Schnee"" (Anführungszeichen doppelt) entspricht der strukturell-deskriptiver Name: "Wort, das aus den sechs aufeinanderfolgenden Buchstaben Es, Ce, Ha, En, E und E besteht" - (Buchstabennamen ohne Anführungszeichen). I 451 Semantisch mehrdeutig/Russell/Tarski: Bsp "Name", "Bezeichnen": a) in Bezug auf Gegenstände - b) auf Klassen, Relationen, usw. I 464 Name/Übersetzung/Metasprache/Objektsprache/MS/OS/Tarski: Unterschied: Ein Ausdruck der Objektsprache kann in der Metasprache a) einen Namen erhalten, oder b) eine Übersetzung. >Objektsprache, >Metasprache. I 496 Namen/Variablen/Konstanten/Tarski: Variablen repräsentieren Namen Konstanten sind Namen. >Repräsentation, >Stellvertreter. Für jede Konstante und jede Variable der Objektsprache (mit Ausnahme der logischen Konstanten des Aussagenkalküls) lässt sich eine fundamentale Funktion bilden, die dieses Zeichen enthält (die Aussagenvariablen kommen in den fundamentalen Funktionen weder als Funktoren noch als Argumente vor). Aussagenvariable: jede ((s) einzelne) von ihnen wird als selbständige fundamentale Funktion betrachtet.(1) >Konstanten/Tarski, >Funktion/Tarski. 1. A.Tarski, Der Wahrheitsbegriff in den formalisierten Sprachen, Commentarii Societatis philosophicae Polonorum. Vol 1, Lemberg 1935 |
Tarski I A. Tarski Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
Terminologien | Tarski | I 451 Def strukturell-deskriptiver Name/Tarski: (andere Kategorie als die Anführungsnamen): beschreiben, aus welchen Worten der durch den Namen bezeichnete Ausdruck und aus welchen Zeichen jedes einzelne Wort besteht und in welcher Ordnung diese aufeinander folgen - das geht ohne Anführungszeichen. Methode: für alle Buchstaben und anderen Zeichen Einzelnamen (keine Anführungsnamen) einführen. - Bsp für die Buchstaben: "f", "j", "P" usw.die Bezeichnungen: Ef, Jott, Pe, iks (ohne Anführungszeichen) - Bsp dem Anführungsnamen ""Schnee"" (Anführungszeichen doppelt) entspricht der strukturell-deskriptiver Name: "Wort, das aus den sechs aufeinanderfolgenden Buchstaben Es, Ce, Ha, En, E und E besteht" - (Buchstabennamen ohne Anführungszeichen). Berka I 454 Def Anführungsfunktion/Tarski: Der im Tarski-Schema (oder Varianten) auftretende Ausdruck ""p"" (Anführungszeichen doppelt) muss als Funktion angesehen werden, deren Argument eine Aussagenvariable und deren Werte konstante Anführungsnamen von Aussagen sind. - Damit werden die Anführungszeichen zu selbständigen Worten (wie das Wort "Name") mit der syntaktischen Rolle von Funktoren. |
Tarski I A. Tarski Logic, Semantics, Metamathematics: Papers from 1923-38 Indianapolis 1983 Berka I Karel Berka Lothar Kreiser Logik Texte Berlin 1983 |
Zitat/ Zitattilgung | Kripke | III 362 Zitat/Relation/Kripke: Das Zitativerfahren Q(x1,a1) definiert keine Relation! Für jedes t, das für x1 eingesetzt werden kann, ist das Resultat ein monadisches Prädikat, mit einer freien referentiellen Variablen, deren Extension {t} ist. Andererseits: Denotation induziert eine Relation, wenn die Formel transparent ist. Der Zitat-Name eines Terms funktioniert radikal anders als ein strukturell-deskriptiver Name. >Denotation, >Strukturell-deskriptiver Name. III 364 Ein Zitat-Name enthält den Term als Teil, ein strukturell-deskriptiver Name nicht. |
Kripke I S.A. Kripke Name und Notwendigkeit Frankfurt 1981 Kripke II Saul A. Kripke "Speaker’s Reference and Semantic Reference", in: Midwest Studies in Philosophy 2 (1977) 255-276 In Eigennamen, Ursula Wolf Frankfurt/M. 1993 Kripke III Saul A. Kripke Is there a problem with substitutional quantification? In Truth and Meaning, G. Evans/J McDowell Oxford 1976 Kripke IV S. A. Kripke Outline of a Theory of Truth (1975) In Recent Essays on Truth and the Liar Paradox, R. L. Martin (Hg) Oxford/NY 1984 |