Philosophie Lexikon der Argumente

Suche  
 
Teilmenge, Mengenlehre: Teilmengen sind nicht zu verwechseln mit Elementen von Mengen, die selber keine Mengen sind. Aus einzelnen Elementen können Einermengen gebildet werden, wenn zusätzliche Annahmen eingeführt werden. Dagegen können Teilmengen aus 0 oder mehr Elementen bestehen. Teilmengen sind jeweils auf eine Menge bezogen, deren Teilmenge sie sind. Die Mächtigkeit einer Menge ergibt sich aus der Zählung ihrer Elemente und nicht aus der Zählung ihrer Teilmengen, da diese sich überlappen können. Die Menge aller Teilmengen einer Menge wird Potenzmenge genannt. Die Leere Menge {0} ist Teilmenge jeder Menge, nicht aber ein Element von ihr. Siehe auch Mengenlehre, Mengen, Potenzmenge, Elementrelation.
 
Autor/Titel Begriff Exzerpt Metadaten

 
Bücher bei Amazon
IX 144
Teilmenge: jede Klasse (Menge) hat mehr Teilklassen als Elemente.

Q I
W.V.O. Quine
Wort und Gegenstand Stuttgart 1980

Q II
W.V.O. Quine
Theorien und Dinge Frankfurt 1985

Q III
W.V.O. Quine
Grundzüge der Logik Frankfurt 1978

Q IX
W.V.O. Quine
Mengenlehre und ihre Logik Wiesbaden 1967

Q V
W.V.O. Quine
Die Wurzeln der Referenz Frankfurt 1989

Q VI
W.V.O. Quine
Unterwegs zur Wahrheit Paderborn 1995

Q VII
W.V.O. Quine
From a logical point of view Cambridge, Mass. 1953

Q VIII
W.V.O. Quine
Bezeichnung und Referenz
In
Zur Philosophie der idealen Sprache, J. Sinnreich (Hg), München 1982

Q X
W.V.O. Quine
Philosophie der Logik Bamberg 2005

Q XII
W.V.O. Quine
Ontologische Relativität Frankfurt 2003

> Gegenargumente gegen Quine



> Eigenen Beitrag vorschlagen | > Haben Sie einen Fehler entdeckt? | > Export als BibTeX Datei
 
Hg. Martin Schulz, Abfragedatum 23.05.2017